Solving Large-Margin Hidden Markov Model Estimation via Semidefinite Programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Large Margin Est via Semidefinite Pr

In this paper, we propose to use a new optimization method, i.e., semidefinite programming (SDP), to solve large margin estimation (LME) problem of continuous density hidden Markov models (CDHMM) for speech recognition. First of all, we introduce a new constraint into the LME to guarantee the boundedness of the margin of CDHMM. Secondly, we show that the LME problem under this new constraint ca...

متن کامل

Soft margin estimation of hidden Markov model parameters

We propose a new discriminative learning framework, called soft margin estimation (SME), for estimating parameters of continuous density hidden Markov models. The proposed method makes direct usage of the successful ideas of soft margin in support vector machines to improve generalization capability, and of decision feedback learning in minimum classification error training to enhance model sep...

متن کامل

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

Max-margin Multiple-Instance Learning via Semidefinite Programming

In this paper, we present a novel semidefinite programming approach for multiple-instance learning. We first formulate the multipleinstance learning as a combinatorial maximummargin optimization problem with additional instance selection constraints within the framework of support vector machines. Although solving this primal problem requires non-convex programming, we nevertheless can then der...

متن کامل

Large Margin Training of Continuous Density Hidden Markov Models

Continuous density hidden Markov models (CD-HMMs) are an essential component of modern systems for automatic speech recognition (ASR). These models assign probabilities to the sequences of acoustic feature vectors extracted by signal processing of speech waveforms. In this chapter, we investigate a new framework for parameter estimation in CD-HMMs. Our framework is inspired by recent parallel t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Audio, Speech and Language Processing

سال: 2007

ISSN: 1558-7916

DOI: 10.1109/tasl.2007.905151